2 research outputs found

    Pulse-echo speed-of-sound imaging using convex probes.

    Get PDF
    Computed ultrasound tomography in echo mode (CUTE) is a new ultrasound (US)-based medical imaging modality with promise for diagnosing various types of disease based on the tissue's speed of sound (SoS). It is developed for conventional pulse-echo US using handheld probes and can thus be implemented in state-of-the-art medical US systems. One promising application is the quantification of the liver fat fraction in fatty liver disease. So far, CUTE was using linear array probes where the imaging depth is comparable to the aperture size. For liver imaging, however, convex probes are preferred since they provide a larger penetration depth and a wider view angle allowing to capture a large area of the liver. With the goal of liver imaging in mind, we adapt CUTE to convex probes, with a special focus on discussing strategies that make use of the convex geometry in order to make our implementation computationally efficient. We then demonstrate in an abdominal imaging phantom that accurate quantitative SoS using convex probes is feasible, in spite of the smaller aperture size in relation to the image area compared to linear arrays. A preliminary in vivo result of liver imaging confirms this outcome, but also indicates that deep quantitative imaging in the real liver can be more challenging, probably due to the increased complexity of the tissue compared to phantoms

    Excluding Echo Shift Noise in Real-Time Pulse-Echo Speed-of-Sound Imaging

    Get PDF
    Computed ultrasound tomography in echo mode (CUTE) allows real-time imaging of the tissue speed of sound (SoS) using handheld ultrasound. The SoS is retrieved by inverting a forward model that relates the spatial distribution of the tissue SoS to echo shift maps detected between varying transmit and receive angles. Despite promising results, in vivo SoS maps often show artifacts due to elevated noise in echo shift maps. To minimize artifacts, we propose a technique where an individual SoS map is reconstructed for each echo shift map separately, as opposed to a single SoS map from all echo shift maps simultaneously. The final SoS map is then obtained as a weighted average over all SoS maps. Due to the partial redundancy between different angle combinations, artifacts that appear only in a subset of the individual maps can be excluded via the averaging weights. We investigate this real-time capable technique in simulations using two numerical phantoms, one with a circular inclusion and one with two layers. Our results demonstrate that the SoS maps reconstructed using the proposed technique are equivalent to the ones using simultaneous reconstruction when considering uncorrupted data but show significantly reduced artifact level for data that are corrupted by noise
    corecore